THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH1010 I/J University Mathematics 2015-2016

Suggested Solution to Problem Set 4

1. (a)

$$
\begin{aligned}
\lim _{x \rightarrow+\infty}\left(\frac{x+1}{x-1}\right)^{x} & =\lim _{x \rightarrow+\infty}\left(1+\frac{2}{x-1}\right)^{x} \\
& =\lim _{x \rightarrow+\infty}\left(\left(1+\frac{1}{\left(\frac{x-1}{2}\right)}\right)^{\frac{x-1}{2}}\right)^{2}\left(1+\frac{1}{\left(\frac{x-1}{2}\right)}\right)^{\frac{1}{2}} \\
& =\left(e^{2}\right)(1) \\
& =e^{2}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\lim _{x \rightarrow+\infty}\left(\frac{x^{2}-2 x-3}{x^{2}-3 x-28}\right)^{x} & =\lim _{x \rightarrow+\infty}\left(1+\frac{x+25}{x^{2}-3 x-28}\right)^{x} \\
& =\lim _{x \rightarrow+\infty}\left(1+\frac{1}{\left(\frac{x^{2}-3 x-28}{x+25}\right)}\right)^{\frac{x^{2}-3 x-28}{x+25}}\left(1+\frac{1}{\left(\frac{x^{2}-3 x-28}{x+25}\right)}\right)^{\frac{28 x+28}{x+25}} \\
& =(e)(1) \\
& =e
\end{aligned}
$$

2. (a) Note that $f(x)$ can be reformulated as the following:

$$
f(x)=\left\{\begin{array}{rcc}
1 & \text { if } & x<4 \\
0 & \text { if } & x=4 \\
-1 & \text { if } & x>4
\end{array}\right.
$$

(b) Note that $\lim _{x \rightarrow 4^{+}} f(x)=\lim _{x \rightarrow 4^{+}}-1=-1$ and $\lim _{x \rightarrow 4^{-}} f(x)=\lim _{x \rightarrow 4^{-}} 1=1$.

Therefore, $\lim _{x \rightarrow 4} f(x)$ does not exist and $f(x)$ is not continuous at $x=4$.
3. For $x \neq 0$, we have

$$
\begin{array}{rlrl}
-1 & \leq & \cos \left(\frac{1}{e^{x}-1}\right) & \leq 1 \\
-x^{2} & \leq x^{2} \cos \left(\frac{1}{e^{x}-1}\right) & \leq x^{2} \\
-x^{2} & \leq & f(x) & \leq x^{2}
\end{array}
$$

Since $\lim _{x \rightarrow 0}-x^{2}=\lim _{x \rightarrow 0} x^{2}=0$, by the sandwich theorem $\lim _{x \rightarrow 0} f(x)=0$.
We have $\lim _{x \rightarrow 0} f(x)=f(0)$, so $f(x)$ is continuous at $x=0$.
4. (a) Put $x=y=0$, we have $f(0)=[f(0)]^{2}$ which implies $f(0)=0$ or 1 . Since $f(0) \neq 0, f(0)=1$.
(b) Since $f(x)$ is continuous at $x=0$, we have

$$
\begin{aligned}
\lim _{h \rightarrow 0} f(0+h) & =f(0) \\
\lim _{h \rightarrow 0} f(h) & =1
\end{aligned}
$$

Now, let $x_{0} \in \mathbb{R}$.

$$
\begin{aligned}
\lim _{h \rightarrow 0} f\left(x_{0}+h\right) & =\lim _{h \rightarrow 0} f\left(x_{0}\right) f(h) \\
& =f\left(x_{0}\right)\left(\lim _{h \rightarrow 0} f(h)\right) \\
& =f\left(x_{0}\right) \cdot 1 \\
& =f\left(x_{0}\right)
\end{aligned}
$$

Therefore, $f(x)$ is continuous at $x=x_{0}$.
Since x_{0} is an arbitrary point, it means $f(x)$ is continuous everywhere.
5. (a) Put $x=y=1$, we have $f(1)=2 f(1)$ and so $f(1)=0$.
(b) Let m be a natural number. $f\left(a^{m}\right)=f(a \cdot a \cdots a)=f(a) \cdot f(a) \cdots f(a)=[f(a)]^{m}$.

Let r be a positive rational number, then $r=\frac{m}{n}$ where m and n are natural numbers.
By the previous result,

$$
\begin{aligned}
f\left(a^{m}\right) & =f\left(\left(a^{m / n}\right)^{n}\right) \\
& =n f\left(a^{m / n}\right) \\
\frac{1}{n} f\left(a^{m}\right) & =f\left(a^{m / n}\right) \\
\frac{m}{n} f(a) & =f\left(a^{m / n}\right) \\
r f(a) & =f\left(a^{r}\right)
\end{aligned}
$$

Let q be a negative rational number. We have

$$
f\left(a^{q}\right)+f\left(a^{-q}\right)=f\left(a^{q} \cdot a^{-q}\right)=f(1)=0 .
$$

Note that $-q$ is a positive rational number, therefore,

$$
f\left(a^{q}\right)=-f\left(a^{-q}\right)=-(-q) f(a)=q f(a) .
$$

Combining the above cases and that $f\left(a^{0}\right)=f(1)=0=0 f(a)$, the result follows.
(c) Let $x \in \mathbb{R}$ and $\left\{x_{n}\right\}$ be a sequence with $\lim _{n \rightarrow \infty} x_{n}=x$.

Since f and power function are continuous, we have

$$
\lim _{n \rightarrow \infty} f\left(a^{x_{n}}\right)=f\left(\lim _{n \rightarrow \infty} a^{x_{n}}\right)=f\left(a\left(\lim _{n \rightarrow \infty} x_{n}\right)\right)=f\left(a^{x}\right)
$$

Also, from (b),

$$
\lim _{n \rightarrow \infty} f\left(a^{x_{n}}\right)=\lim _{n \rightarrow \infty} x_{n} f(a)=x f(a)
$$

Therefore, for any $x \in \mathbb{R}$ and $a>0, f\left(a^{x}\right)=x f(a)$.
Next, let $y=a^{x}$, for $x>0$. Then $x=\frac{\ln y}{\ln a}$ and so

$$
f(y)=\frac{\ln y}{\ln a} f(a)=\frac{f(a)}{\ln a} \ln y .
$$

By replacing y and $\frac{f(a)}{\ln a}$ by x and c respectively, then $f(x)=c \ln x$.
(Remark: Therefore, all continuous functions that satisfy the condition $f(x y)=f(x)+f(y)$ for all $x, y>0$ must be in the form $f(x)=c \ln x$ for some constant c.)

